
Calogero–Sutherland eigenfunctions with mixed boundary conditions and conformal field

theory correlators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 2509

(http://iopscience.iop.org/1751-8121/40/10/018)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 03/06/2010 at 05:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/10
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 2509–2540 doi:10.1088/1751-8113/40/10/018

Calogero–Sutherland eigenfunctions with mixed
boundary conditions and conformal field theory
correlators

B Doyon1 and J Cardy1,2

1 Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
2 All Souls College, Oxford, UK

E-mail: b.doyon1@physics.ox.ac.uk

Received 6 November 2006, in final form 23 January 2007
Published 21 February 2007
Online at stacks.iop.org/JPhysA/40/2509

Abstract
We construct certain eigenfunctions of the Calogero–Sutherland Hamiltonian
for particles on a circle, with mixed boundary conditions. That is, the behaviour
of the eigenfunction, as neighbouring particles collide, depend on the pair of
colliding particles. This behaviour is generically a linear combination of two
types of power laws, depending on the statistics of the particles involved. For
fixed ratio of each type at each pair of neighbouring particles, there is an
eigenfunction, the ground state, with lowest energy, and there is a discrete set
of eigenstates and eigenvalues, the excited states and the energies above this
ground state. We find the ground state and special excited states along with
their energies in a certain class of mixed boundary conditions, interpreted as
having pairs of neighbouring bosons and other particles being fermions. These
particular eigenfunctions are characterized by the fact that they are in direct
correspondence with correlation functions in boundary conformal field theory.
We expect that they have applications to measures on certain configurations of
curves in the statistical O(n) loop model. The derivation, although completely
independent of results of conformal field theory, uses ideas from the ‘Coulomb
gas’ formulation.

PACS numbers: 02.50.Cw, 05.10.Gg, 11.25.Hf

1. Introduction

Recently [1], the Calogero–Sutherland quantum-mechanical Hamiltonian (see, for instance,
the book [2]) was shown to be related to certain bulk-boundary correlation functions in
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conformal field theory on the disc. The Calogero–Sutherland Hamiltonian for N particles at
angles θ1, . . . , θN on the circle, with parameter β, is

HN(β) = −
N∑

j=1

1

2

∂2

∂θ2
j

+
β(β − 2)

16

∑
1�j<k�N

1

sin2
( θj −θk

2

) . (1.1)

The corresponding CFT has central charge c related to the parameter β through

β = 8

κ
, c = 1 − 3(4 − κ)2

2κ
.

The Hamiltonian is invariant under β → 2 − β. The relations above imply that we chose
the range β ∈ [1,∞] for the values κ ∈ [0, 8] that we will consider in this paper. This
discovery initially came from an analysis of the equations believed to be associated with
multiple SLEκ processes (Schramm–Loewner evolution (SLE) processes were introduced in
[3], multiple SLE generalizations were introduced in [4] and developed to a large extent in
[5], although only through conjectured properties—see appendix B of a short review of what
SLE is). But the connection can be established solely from CFT concepts, as was shown
in [1]. The main ingredients are level-2 degenerate boundary fields, one for each particle,
and a bulk primary field at the centre of the disc: the N null-vector differential operators
[6] acting on the correlation functions can be recast, by taking a linear combination, into
the Calogero–Sutherland Hamiltonian. Hence, the correlation functions can then be recast
into eigenfunctions of the Hamiltonian. Various choices of primary field give rise to various
eigenfunctions; in particular, the dimension of the bulk primary field is connected to the energy
associated with the eigenfunction. But not all eigenfunctions can be reproduced in this way,
since the N null-vector equations are more restrictive than that eigenvalue equation of the
Hamiltonian. Two problems arise then naturally: to determine which eigenfunctions (that is,
which boundary conditions, and for these boundary conditions, which states) indeed give rise
to correlation functions, and to obtain explicit expressions for these eigenfunctions. These
two problems are solved in great part in this paper.

Finding eigenfunctions of the Hamiltonian (1.1) requires one more piece of information:
the behaviour of eigenfunctions � as particles collide (boundary conditions). Fixing the
boundary conditions (which we will sometimes refer to as choosing a sector) fixes the Hilbert
space; we will be more precise in the text about how boundary conditions are fixed. From
the CFT viewpoint, these behaviours are related to the boundary operator product expansion
(OPE) (more precisely, the overlap between the bulk primary field and the boundary OPEs).
Here and in the following, we choose the sector θ1 > · · · > θN > θ1 − 2π , and we will
consider the behaviour of eigenfunctions at the collisions θi → θ+

i+1 (with θN+1 ≡ θ1 − 2π ).
It will be sufficient to specify the behaviour of an eigenfunction at these boundaries in order
to fix the eigenfunction3. An elementary indicial analysis of the Calogero–Sutherland system
shows that the behaviour of the wavefunction as two particles collide is generically a linear
combination of two types of power laws, which we will refer to as ‘bosonic’:

� ∝ (θi − θi+1)
κ−4
κ , (θi − θi+1 → 0+), (1.2)

and ‘fermionic’:

� ∝ (θi − θi+1)
4
κ (θi − θi+1 → 0+). (1.3)

3 The behaviour at collisions pertaining to other ordering of the angles can in principle be obtained by analytic
continuation.
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This nomenclature comes from the fact that for 0 < κ < 4 the wavefunction vanishes as
fermions (particles with fermionic boundary conditions) collide, whereas it diverges as bosons
(particles with purely bosonic boundary conditions) collide. From the conformal field theory
viewpoint, these correspond to the two families appearing in the fusion of level-2 null fields:
that of the identity, and that of level-3 null fields. It is a simple matter to verify, for instance,
that the ground state in the sector with fermionic boundary conditions at all pairs of colliding
particles, which is the usual fermionic ground state, does correspond to a correlation function
satisfying all null-vector equations, but the ground state with all bosonic boundary conditions
generically does not.

In this paper, we solve the null-vector equations for certain bulk primary operators, of
various scaling dimensions and of any spin. The results give rise to integral formulae for certain
eigenfunctions of the Calogero–Sutherland Hamiltonian. These integral formulae are in close
relation with those obtained by Dubédat [7], who was essentially considering the case without
bulk field. The technique we use is at the basis of the Coulomb gas formalism [8, 9] of CFT
for bulk correlation functions in minimal models, and works for generic central charge and
for boundary operators as well. This technique was also used in [10] for correlation functions
without bulk field4. The motivation was to evaluate the ‘auxiliary functions’ appearing in
constructions of multiple SLE processes [5], which satisfy the level-2 null-vector equations
with zero-dimension bulk field. In the present paper, we will derive the formulae in the
simplest way possible; we do not need any of the machinery developed for the Coulomb gas
formalism, for CFT or for SLE, as we work only with the differential equations.

The construction gives rise to a certain class of boundary conditions for the eigenfunctions,
satisfied by the ground states and the excited states. It is important to understand that with
mixed boundary conditions, one should only distinguish between classes C whose elements
can be obtained from one another by simple linear combinations:

�1 ∈ C and �2 ∈ C ⇒ �3 = a�1 + b�2 ∈ C for a � 0, b � 0.

If �1 and �2 have different mixed boundary conditions but correspond to the same energy,
then �3 also is an eigenfunction of the Hamiltonian, with yet again different mixed boundary
conditions and with the same energy. Also, if both �1 and �2 are ground states, everywhere
positive, then �3 also is (this is why we need the condition that both a and b be greater than
zero: the eigenfunction of a ground state should be everywhere positive). It is easy to obtain,
from �1 with a given energy, �2 with the same energy: one only needs, for instance, to make
cyclic permutations of the particle positions.

The classes of boundary conditions that we obtained are those with distinctive elements as
follows: some pairs of colliding neighbouring particles, which do not have common members
among each other, present purely bosonic behaviour (that is, the eigenfunction behaves like
(1.2) times a power series in (θi − θi+1)), pairs formed by any other neighbouring particles
present purely fermionic behaviour, and the remaining pairs present both fermionic and bosonic
components, in a certain fixed proportion (see figure 1). One can interpret the pairs with purely
bosonic behaviour as being pairs of bosons, whereas the other particles as being fermions.
Note that in one dimension this does not have any implication for the way the eigenfunction
should behave when non-neighbouring particles approach each other: we work only with a
fixed ordering of the {θj }. While the eigenfunction may be analytically continued to other
orderings, these are not physical. This is in distinction to the case in higher dimensions, when
particles can be moved past each other.

The Calogero–Sutherland system was mainly studied, until now, on the Hilbert space of
wavefunctions with simple uniform boundary conditions: all particle collisions giving only

4 We wish to note that the paper [10] was published after we had established the working of our technique.
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Mixed

Bosonic

Fermionic

Figure 1. An example of boundary conditions satisfied by our solutions.

Figure 2. An example of a domain-wall configuration in the O(n) model, or multiple SLE
configuration, corresponding to our solution with the 3-leg operator.

fermionic exponents, or all giving only bosonic exponents. Our new solutions to the null-vector
equations give special eigenfunctions of the Calogero–Sutherland system for mixed boundary
conditions, physically corresponding to some particles being fermions and some being bosons.
An eigenfunction of the Calogero–Sutherland Hamiltonian with nonzero (angular) momentum,
which would correspond to a bulk primary field with nonzero spin, can always be obtained
from one with zero momentum by a Galilean transformation. However, such eigenfunctions
are not generically in agreement with all null-vector equations. Our solutions with nonzero
spin are not simple Galilean transform of those with zero spin. They are yet new solutions,
and correspond, in fact, to giving nonzero momentum only to the fermions.

Some of the bulk primary operators corresponding to our solutions are the ‘N ′-leg
operators’ (with N ′ = N −2M,M ∈ N)—that is, their dimensions are the ‘N ′-leg’ exponents
[11]. They have meaning in the context of the critical O(n) loop model [12], and they
are expected to be connected to certain restriction of or events in multiple-SLE measures.
The corresponding solutions are expected to be related to measures for configurations of
the type shown in figure 2 (although we could only give a conjecture for this relation in the
case where there is single pairing). It is these solutions that lead to ground states. Other
operators correspond to excited states and to states with nonzero momentum, but have as yet
no known physical interpretation.

The paper is organized as follows. In section 2, we recall the results of [1]. Then,
in section 3, we construct our integral representations, and derive the associated boundary
conditions. We also give the Coulomb-gas interpretation of our construction. In section 4,
we derive some general results about solutions to the null-vector equations in the case where
N = 3 (we show that our solutions form a complete basis). Finally, in section 5, we discuss
the interpretation of our results in the continuum O(n) loop model.
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2. Review of the connection between null vector equations and the
Calogero–Sutherland system

2.1. Null vector equations

Consider the following family of correlation functions in a boundary conformal field theory
on the unit disc:

G = 〈φ(eiθ1) · · · φ(eiθN )�(0)〉 (2.1)

where φ are primary level-2 degenerate boundary fields and � is a primary bulk field, for
N = 1, 2, . . . . For now we will consider only spinless bulk fields �, deferring the discussion
of a field with spin to section 3.3. Using the parameter κ appearing naturally in SLE, we will
parametrize the central charge c and the dimension h of the boundary fields by

c = 1 − 3(4 − κ)2

2κ
, h = 6 − κ

2κ
. (2.2)

As was shown in [1], the null-vector equations [6, 13] associated with this correlation function
imply that a certain simple modification of this correlation function is an eigenfunction of the
Calogero–Sutherland Hamiltonian. One applies the infinitesimal conformal transformation
z 
→ z + α(z) with

α(z) =
N∑

j=1

bjαj (z), αj (z) = −z
z + eiθj

z − eiθj
. (2.3)

Thanks to the relation

αj (z) = −z̄2αj (z̄
−1), (2.4)

this infinitesimal transformation preserves the region D\{zj }, the disc minus the boundary
points zj ≡ eiθj . It is a pure scaling at the centre α(z) ∼ z, z → 0, and it has poles
at the positions zj of the boundary fields, generating locally there non-trivial conformal
transformations whose effect can be evaluated thanks to the null-vector property. The result
is the set of differential equations

N∑
j=1

bjDjG = d�


 N∑

j=1

bj


G (2.5)

where d� is the scaling dimension of �, and with

Dj = −κ

2

(
∂

∂θj

)2

+
(6 − κ)(κ − 2)

8κ
−
∑
k �=j

(
cot

(
θk − θj

2

)
∂

∂θk

− h

2 sin2
( θk−θj

2

)
)

. (2.6)

This is derived in appendix B for completeness of the discussion. Note further that

(6 − κ)(κ − 2)

8κ
= h

6
+

c

12
.

This reproduces the operator Dj obtained in [1] from slightly different arguments.

2.2. Calogero–Sutherland Hamiltonian

It will be convenient for this paper to introduce the notation:

f (θ) = cot

(
θ

2

)
, fjk = f (θj − θk), Fj =

∑
k �=j

fjk. (2.7)
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Using this notation, we have

Dj = −κ

2
∂2
j +

(6 − κ)(κ − 2)

8κ
+
∑
k �=j

(fjk∂k − hf ′
jk) (2.8)

with ∂j ≡ ∂/∂θj , and the Calogero–Sutherland Hamiltonian (1.1) can be written as

HN(β) = −
∑

j

(
1

2
∂2
j +

β(β − 2)

16
F ′

j

)
. (2.9)

In order to relate the null-vector equations to the Calogero–Sutherland system, we look at the
case where bj = 1 for j = 1, . . . , N . We will denote

D =
∑

j

Dj = −κ

2

∑
j

∂2
j + N

(6 − κ)(κ − 2)

8κ
−
∑

j

(Fj∂j + hF ′
j ). (2.10)

Equation (2.5) implies that correlation functions G are eigenfunctions of D with eigenvalue
Nd�. Consider the function of all θj ’s

gr =
∏

1�j<k�N

(
sin

θj − θk

2

)−2r

(2.11)
(θi > θi+1, i = 1, . . . , N − 1, θN > θ1 − 2π).

From the properties ∂jgr = −rgrFj and
∑

j F 2
j = −2

∑
j F ′

j − N(N2−1)

3 , it is a simple matter
to check that

g− 1
κ

· D · g 1
κ

= κHN

(
8

κ

)
− N(N2 − 1)

6κ
+ N

(6 − κ)(κ − 2)

8κ
(2.12)

(here and below, the dot (·) means multiplication as operators on functions). Hence, any
correlation function G gives rise to an eigenfunction

� = g−1
1
κ

G (2.13)

of the Calogero–Sutherland Hamiltonian HN

(
8
κ

)
, with eigenvalue

E = N

κ

[
d� +

(N2 − 1)

6κ
− (6 − κ)(κ − 2)

8κ

]
. (2.14)

2.3. The fermionic and bosonic ground states

The set of null-vector equations (2.5) is more restrictive than the eigenvalue equations for
the Hamiltonian (1.1). Hence, not all eigenfunctions satisfy all requirements to be associated
with CFT correlation functions. Here we recall the fermionic and bosonic ground states of
the Calogero–Sutherland Hamiltonian, and verify in which case they can be associated with
correlation functions.

It is a simple matter to find certain eigenfunctions of the operator D, which correspond to
the ground state of HN

(
8
κ

)
with all fermionic (1.3) or all bosonic (1.2) boundary conditions.

Indeed, we have

g−r · D · gr = −κ

2

∑
j

∂2
j + (κr − 1)

∑
j

Fj ∂j +
(
−2r + κr2 +

κr

2
− h

)∑
j

F ′
j

+ N
(6 − κ)(κ − 2)

8κ
+

(
−r +

κr2

2

)
N(N2 − 1)

3
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so that with the two values

r = rf ≡ − 1

κ
, r = rb ≡ h = 6 − κ

2κ
(2.15)

the factor multiplying
∑

j F ′
j vanishes (note that these two values are equal, rf = rb, only at

κ = 8). Hence, a simple eigenfunction of this operator is 1, which gives the usual fermionic
and bosonic ground-state eigenfunctions of the Calogero–Sutherland Hamiltonian (see, for
instance, [2])

�
f

N = grf − 1
κ

= g− 2
κ
, �b

N = grb− 1
κ

= g 4−κ
2κ

(2.16)

with the associated eigenvalues

E
f

N =
(

4

κ

)2
N(N2 − 1)

24
, Eb

N =
(

4 − κ

κ

)2
N(N2 − 1)

24
. (2.17)

They are related by the transformation 4/κ → 1 − 4/κ keeping the Hamiltonian HN(8/κ)

invariant.
The corresponding eigenfunctions of the operator D are

G
f

N = grf
, Gb

N = grb
(2.18)

and the eigenvalues are Nd
f

N,Ndb
N with

d
f

N = N2

2κ
− (κ − 4)2

8κ
(2.19)

and

db
N = (6 − κ)(κ − 2)

24κ
(4 − N2). (2.20)

Note that in general, any correlation function G with behaviour ∝ (θi − θi+1)
−2rf leads to

the fermionic boundary condition (1.3) for the wavefunction, whereas any correlation function
with behaviour ∝ (θi − θi+1)

−2rb leads to the bosonic boundary condition (1.2).
It is a simple matter to check that G

f

N satisfies all equations (2.5), but that Gb
N does

not, unless N = 2 or κ = 6 or κ = 8 (in the latter case, Gb
N = G

f

N ). Hence, G
f

N is a
CFT correlation function, and d

f

N is a scaling dimension of a primary operator that couples
to boundary level-two null vectors; whereas Gb

N and db
N generically are not. Note that d

f

N is
equal to the N-leg exponent [11]. Consider the similarity transform

g−r · Dj · gr = −κ

2
∂2
j + κrFj∂j − κr2

2
F 2

j +
κr

2
F ′

j

+
∑
k �=j

(fjk(∂k − rFk) − hf ′
jk) +

(6 − κ)(κ − 2)

8κ
. (2.21)

The function gr is an eigenfunction of Dj if and only if the term

−κr2

2
F 2

j +
(κr

2
− h

)
F ′

j − r
∑
k �=j

fjkFk +
(6 − κ)(κ − 2)

8κ

is a constant. Some algebra (or a simple analysis of the simple and double poles) shows that
it is indeed constant if and only if

−2κr2 − κr + 2h + 4r = 0 and r(2κr + 2)
∑

k �=j,k �=l

flk = 0 (2.22)

for all l �= j . The first condition is satisfied for r = rf or r = rb only, and the second, for
N = 2 or r = rf or r = 0. Hence, for N > 2,G

f

N is a common eigenfunction of all Dj for
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any κ , and Gb
N is only for κ = 6 (making h = 0) or κ = 8 (in which case rf = rb). In the

case κ = 6, the function Gb
N is just a constant. One can also check that the eigenvalues are

independent of j :

Dj gr =
(

κr2

2
(N − 1)2 − r(N − 1) +

(6 − κ)(κ − 2)

8κ

)
gr (2.23)

in the cases above. The eigenvalues are indeed equal to d
�

f

N
and d�b

N
when we put, respectively,

r = rf and r = rb.

2.4. L2-normalizability and Hermiticity

The fermionic ground-state eigenfunction �f (2.16) is L2-normalizable for the full range
0 < κ � 8, but the bosonic one, �b, is only for 8/3 < κ � 8 (the value κ = 8/3 is the value
at which the bosonic behaviour is of power −1/2 in wavefunctions). In general, as soon as
a wavefunction has bosonic behaviour at some colliding pair of angles, it is L2-normalizable
only in that range; in particular, this holds for all wavefunctions in sectors with mixed boundary
conditions found below. For generic κ in the normalizable range, the Hamiltonian (1.1) is
Hermitian. This is easy to understand from the L2 norm. With �1 and �2 Hamiltonian
eigenfunctions (possibly in a mixed sector), one evaluates

∫
ε

dθ1 · · · dθN�∗
1 H�2 where the

integration region is θi > θi+1 + ε (and θN+1 ≡ θ1 − 2π ) for some small positive ε. By
normalizability and by the eigenfunction property, this multiple integral converges as ε → 0.
Checking Hermiticity involves integrating by part on all angles (to make things more obvious,
one could change variables to angle differences and the total angle average), and the only
possible violation of Hermiticity comes from boundary terms as angle differences are equal to
ε. But for generic κ , these will be non-integer (possibly negative) powers of ε, generically not
the power 0. Since the multiple integral resulting after integration by part is also convergent,
all boundary terms must vanish as ε → 0, which shows Hermiticity.

3. Integral representations of solutions to null-vector equations: mixed boundary
conditions and excited states

In this section, we construct integral representations for solutions to the null-vector
equations (2.5) employing a technique that mimics the Coulomb gas formalism of CFT. We will
observe that some of these solutions correspond to excited states of the Calogero–Sutherland
system above the completely fermionic ground state, that some correspond to completely new
ground-state solutions with boundary conditions that are purely bosonic at certain pairs of
colliding angles and purely fermionic at other pairs (as described in the introduction), and that
some are excited states above these new ground states. The results of this section are very
similar in form to those of Dubédat [7], and the techniques are in close relations to those used
in [10].

3.1. One integration variable

Consider the function

w = G
f

N

∏
1�k�N

∣∣∣∣sin
θk − ζ

2

∣∣∣∣
−2α

. (3.1)

Denote

fj = f (θj − ζ ). (3.2)
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Then, we have

∂jw = Fj

κ
w − αfjw. (3.3)

Consider also the new operator

Wj = Dj + fj∂ζ − f ′
j . (3.4)

One finds that

(w−1 · Wj · w)1 = (6 − κ)(κ − 2)

8κ
+

N2 − 1

2κ
+
(κα

2
− 1

)
f ′

j

−α
(κα

2
− 1

)
f 2

j − α
∑
k �=j

(fjk(fk − fj ) − fkfj ). (3.5)

In order to cancel the double pole at θj = β coming from f ′
j and f 2

j , we need

α
(κα

2
− 1

)
= −1

2

(κα

2
− 1

)
(3.6)

so that

α = −1

2
or α = 2

κ
. (3.7)

It is a simple matter to verify that the sum
∑

k �=j (fjk(fk − fj ) − fkfj ) does not have poles at
θj = ζ, θj = θk (k �= j) and θk = ζ (k �= j), so that it is a constant. Evaluating this constant
by taking θj → −i∞, where fjk = fj = i, we find

Wjw =
[
N2

2κ
− (κ − 4)2

8κ
+ α

(κα

2
− N

)]
w ≡ d

(α)
N w. (3.8)

In the first case of (3.7), the eigenvalue is given by

d
(− 1

2 )
N = (N + κ/2)2

2κ
− (κ − 4)2

8κ
(3.9)

whereas in the second case, it is

d
( 2

κ )
N = (N − 2)2

2κ
− (κ − 4)2

8κ
= d

f

N−2. (3.10)

We now consider the analytic continuation of w as function of β. For definiteness, we choose
the analytic continuation from the region θN > β > θ1 − 2π , where it is real and positive, and
we still denote this analytic continuation by w. Note that

Wj = Dj + ∂ζ · fj . (3.11)

Hence, the function

GC = A

∮
C

dζ w (3.12)

satisfies

DjGC = d
(α)
N GC (3.13)

for any closed contour C on the multi-sheeted Riemann surface on which w lives as a function
of ζ ; the function GC will be nonzero only for contours that are topologically non-trivial. The
normalization constant A will be chosen for convenience: if possible, it will be such that the
result is real and positive in the chosen sector θ1 > · · · > θN > θ1 − 2π . This is necessary
for identifying the result as a ground state of the Calogero–Sutherland system (that is, without
zeros), as well as for its interpretation as a measure on stochastic processes (but obviously not
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0
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z5

z6

z4
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y

Figure 3. Contour Corigin (with N = 6).

necessary for the interpretation as correlation functions, or as linear combinations of measures
with complex coefficients).

In fact, the analytic structure of the integration measure dζ w is easier to see when it is
expressed in terms of the variables zj = eiθj and y = eiζ . In terms of these variables, the
function w is

w = G
f

N(2i)2αNyαN
∏

1�k�N

[
zα
k (zk − y)−2α

]
. (3.14)

The analytic structure of the function dβ/dyw = −iw/y is as follows.

• Case α = − 1
2 . There are two singular points: one at y = 0, of the type y−1−N/2[[y]], and

the other at y = ∞, of the type y−1+N/2[[y−1]].
• Case α = 2

κ
. There are singular points at y = zj of the type (y − zj )

−4/κ [[y − zj ]], at
y = 0 of the type y−1+2N/κ [[y]] and at y = ∞ of the type y−1−2N/κ [[y−1]].

3.1.1. Case α = − 1
2 : excited state above the fermionic ground state. If N is even, there is

only one class of topologically non-trivial contours, those circling the origin. Circling once
counterclockwise (contour Corigin, see figure 3), the result is (with appropriate normalization)

GCorigin = G
f

N

∑
u≡{u1,...,uN/2},v≡{v1,...,vN/2}

|u∪v={1,...,N}

cos
N/2∑
j=1

θuj
− θvj

2

= 1

(N/2)!
G

f

N

∑
{{u1,v1},...,{uN/2,vN/2}}
|∪N/2

j=1{uj ,vj }={1,...,N}

N/2∏
j=1

cos
θuj

− θvj

2
. (3.15)

Observe that although the result is clearly real, it is impossible to make it positive everywhere
(for any one ordering of the angles).

If N is odd, there is only one class again, a representative being the 8-shaped contour
circling the origin counterclockwise and the point ∞ clockwise (or circling twice the origin
counterclockwise). However, because of the structure of the singularities at the origin and at
infinity, this gives zero: there are no contours giving nonzero eigenfunctions with eigenvalue

d
1
2
N for N odd.

The dimension d
(− 1

2 )
N associated with the correlation function G (3.15) corresponds to the

energy of a certain excited state of the Calogero–Sutherland Hamiltonian above the N-particle
completely fermionic ground state �

f

N (2.16) for N even. In general, these excited states are
characterized by a set of non-negative integers pj , j = 1, . . . , N − 1, and have eigenvalues
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Figure 4. Contour C(1) (with N = 7).

E
f ;p1,...,pN−1
N = 1

2

∑N
j=1 k2

j with
∑N

j=1 kj = 0, kj+1 − kj = 4/κ + pj [2]. The corresponding

field dimension, related to the eigenvalues E
f ;p1,...,pN−1
N through (2.14), will be denoted as

d
f ;p1,...,pN−1
N . A configuration of p1, . . . , pN−1 that reproduces the dimension d

(− 1
2 )

N satisfies

N−1∑
l=1

N−1∑
l′=1

(N min(l, l′) − ll′)plpl′ = N2

4

N−1∑
l=1

l(N − l)pl = N2

4
.

It is a simple matter to observe that there are no solutions for odd N, and that for all N even,

d
(− 1

2 )
N = d

f ;p1,...,pN−1
N

with

{
p1 = · · · = pN/2−1 = pN/2+1 = · · · = pN−1 = 0,

pN/2 = 1
(3.16)

(N even) .

Also, one can check that there are no other configurations of p1, . . . , pN−1 that reproduce

d
(− 1

2 )
N for all even N � 10 (that is, these states are non-degenerate).

It is easy to check explicitly that our solution (3.15) for N even, along with the
transformation (2.13), reproduces the well-known eigenfunctions for these excited states.
Indeed, the function multiplying G

f

N is proportional to the sum over all zi-permutations of
the product

∏
i z

λi

i where half of the λi’s are +1/2, and half are −1/2. This corresponds to a
single gap in the ‘Fermi sea’ of particles, making it two filled bands with the same number of
particles separated by the minimum energy, as described by the configuration pN/2 = 1 and
pj = 0, j �= N/2, along with the constraint of zero total momentum (see, for instance, [2]).

Hence we have found that certain fermionic excited states of the Calogero–Sutherland
Hamiltonian are in fact also solutions to all null-vector equations (2.5).

3.1.2. Case α = 2
κ

: ground state with mixed boundary conditions. In this case, many classes
of non-trivial contours exist. It turns out that a basis can be obtained by taking 8-shaped
contours that surround the point zi once counterclockwise and the point zi+1 once clockwise,
for i = 1, . . . , N (with zN+1 ≡ z1). We will denote contours of this type by C(i) where i stands
for the index of the first member zi (in the clockwise ordering around the unit circle) of a pair
of adjacent angles (see figure 4). The result of the integration with any other contour can be
written as a linear combination of the integration with the contours C(i). Note that 8-shaped
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contours are closed since the singularities at the points z1, . . . , zN are all of the same type.
The solutions that we consider are then

GC(i) = A(2i)
4N
κ G

f

N

∫
C(i)

dy y
2N
κ

−1
∏

1�j�N

(
z

2
κ

j (zj − y)−
4
κ

)
. (3.17)

The two parts of the integration contour that lie between zi and zi+1 can be collapsed to a
segment of line (on different Riemann sheets), and if κ > 4, the contributions around the points
zi and zi+1 can be set to zero by collapsing them upon the points zi and zi+1, respectively. One
is then left with

GC(i) = A(2i)
4N
κ (1 − ω)G

f

N

∫ zi+1

zi

dy y
2N
κ

−1
∏

1�j�N

(
z

2
κ

j (zj − y)−
4
κ

)
(κ > 4) (3.18)

where

ω = e
8iπ
κ .

For the rest of this sub-section, we will restrict ourselves to the case κ > 4.
This solution corresponds to the ground state of the Calogero–Sutherland system with

certain mixed boundary condition. That it is a ground state (that it has no zeros in the sector that
we consider) is seen by writing expression (3.18), with an appropriate normalization constant,
in a form that is obviously real and positive (A = 1/2eiϕ for some real ϕ that depends on i):

(κ > 4) GC(i) = sin
4π

κ
G

f

N

∫ θi+1

θi

dζ
∏

1�k�N

∣∣∣∣sin
θk − ζ

2

∣∣∣∣
− 4

κ

. (3.19)

Below we show that it has purely bosonic behaviour as θi → θi+1, mixed behaviour as
θi−1 → θi and θi+1 → θi+2, and purely fermionic elsewhere. That is, the solution takes the
following forms when expanded around different pairs of colliding angles:

GC(i) =




(θi − θi+1)
−2rb [[θi − θi+1]]

(θi+1 − θi+2)
−2rb [[θi − θi+1]] + (θi+1 − θi+2)

−2rf [[θi+1 − θi+2]]

(θi−1 − θi)
−2rb [[θi−1 − θi]] + (θi−1 − θi)

−2rf [[θi−1 − θi]]

(θj − θj+1)
−2rf [[θj − θj+1]]

(3.20)

where j �= i, i + 1, i − 1 mod N .
Let us analyse the boundary conditions from expression (3.18). Take for simplicity i = 1

(other cases are obtained by a cyclic permutation of the variables). The singularity as z1 → z2

can be obtained by setting the variables y and z1 to z2 everywhere except in the factors
(z1 − y)2/κ and (z2 − y)2/κ and by calculating∫ z2

z1

dy(y − z1)
− 4

κ (z2 − y)−
4
κ = �

(
1 − 4

κ

)2

�
(
2 − 8

κ

) (z2 − z1)
1− 8

κ (3.21)

which, multiplied by (z2 − z1)
2/κ coming from the factor G

f

N , gives

∝ (z2 − z1)
1− 6

κ = (z2 − z1)
−2rb . (3.22)

This is the bosonic behaviour. It is in fact a purely bosonic behaviour (corrections are positive
integer powers of z2−z1), and the exact leading part of GCi

is given by (taking the normalization
as in (3.19))

GC(1) = 2 sin
4π

κ

�
(
1 − 4

κ

)2

�
(
2 − 8

κ

) G
f

N−2(θ3, . . . , θN)

(
sin

θ1 − θ2

2

)−2rb

(1 + O(θ1 − θ2)). (3.23)
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Here we wrote everything back in terms of the angular variables, and we wrote explicitly the
dependence of G

f

N−2 on these variables for clarity. The behaviours as z2 → z3 and zN → z1

are generically modified: they have a bosonic part and a fermionic part. For the leading
bosonic behaviour as z2 → z3, for instance, one just replaces the variables z2 and y by z3,
except in the factors (z2 − y)−4/κ , (z3 − y)−4/κ and in the integration limit z2. Taking the
integration limit z1 to ∞ gives the leading bosonic behaviour (again with the normalization as
in (3.19))

GC(1) = 2 sin
4π

κ

�
(
1 − 4

κ

)
�
(−1 + 8

κ

)
�
(

4
κ

) G
f

N−2(θ1, θ4, . . . , θN)

(
sin

θ2 − θ3

2

)−2rb

× (1 + O(θ2 − θ3)) + O((θ2 − θ3)
−2rf ). (3.24)

The fermionic part (which is subleading) has a more complicated expression that we will not
write here, and is generically nonzero. We expect that, from the viewpoint of the Calogero–
Sutherland Hamiltonian, the behaviours (3.23) and (3.24) (with the explicit constant for the
fermionic behaviour in (3.24)) fixes the Hilbert space. Note that this is a different Hilbert
space than the usual fermionic or bosonic ones, hence the new ground state (3.19) does not
violate the unicity of the known fermionic of bosonic ground states of the Calogero–Sutherland
Hamiltonian.

It is worth noting, however, that in the case N = 3 and κ = 6, the functions GC(i) all
degenerate to constants (that is, in this case all behaviours are purely bosonic); this is just the
solution Gb

3.

3.2. Many integration variables

It is a simple matter to extend the method to integral formulae with many integration variables.
Consider now

w = G
f

N

∏
1�j<k�M

∣∣∣∣sin
ζj − ζk

2

∣∣∣∣
−2βjk ∏

1�j�N,1�k�M

∣∣∣∣sin
θj − ζk

2

∣∣∣∣
−2αk

. (3.25)

A calculation similar to that of the previous sub-section shows that this is an eigenfunction of
the operators

Wj = Dj +
M∑

k=1

(
f k

j ∂ζk
− (

f k
j

)′)
(3.26)

where f k
j = f (θj − ζk), if and only if

βjk = −καjαk and

[
αj = −1

2
or αj = 2

κ

]
(3.27)

for all j, k = 1, . . . ,M (and in general, we can have αj �= αk for j �= k). Let us denote by
Q the number of parameters αj that are set to − 1

2 , and by R the number of parameters αj that
are set to 2

κ
(that is, Q + R = M). Then, the eigenvalue associated with w is

d
(Q,R)
N = 1

2κ

(
N − 2R +

κ

2
Q
)2

− (κ − 4)2

8κ
(3.28)

(concerning the relation with our previous notation, we have d
(− 1

2 )
N = d

(1,0)
N , d

( 2
κ )

N = d
(0,1)
N ).

Again, we can construct eigenfunctions of all operators Dj with the eigenvalue above by
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Figure 5. The y1 part of the set of contours C2
origin (with N = 6).

considering the analytic continuation of the function w (on a branch of our choice) and by
constructing

GC1,...,CM
= A

∫
C1

dζ1 · · ·
∫
CM

dζM w (3.29)

where the contours C1, . . . , CM must be topologically non-trivial. Introducing the variables
yk = eiζk and zj = eiθj will simplify the discussion of the contours. We then have

w = G
f

N(2i)υ
∏

1�k�M

y
αk(N−2R+ κ

2 Q+καk)
k

×
∏

1�j�N,1�k�M

[
z
αk

j (zj − yk)
−2αk

] ∏
1�j<k�M

(yj − yk)
2καj αk

and

GC1,...,CM
= A

∫
C1

dy1

y1
· · ·

∫
CM

dyM

yM

w (3.30)

with

υ = −κ2Q(Q − 1) + 4κQ(N − 2R) + 16R(R − N − 1)

4κ
.

3.2.1. Case R = 0: excited states above the fermionic ground state. Taking R = 0, there
are no singularities at the points z1, . . . , zN , but there are at yj = yk, j �= k and at yk = 0.
The contours Ck’s in yk-planes can be made non-trivial by ‘surrounding themselves’ and
surrounding the origin, in a way that generalizes the case Q = 1 discussed in the previous
sub-section. For instance, one may first integrate over y1 surrounding the origin and the point
y2 in the ‘double 8’ contour shown in figure 5 (note that an 8-shaped contour is not closed in
this case, since the origin and y2 are algebraic singularities with different powers). Then, one
may integrate the variable y2 surrounding the origin and y3, etc, until only the variable yQ is
left. The remaining integral is of the form

∫
dyQ/yQy

−QN/2
Q [[yQ]] (by power counting), which

is nonzero only if QN is even; the contour can then be taken surrounding the origin. This set
of contours C1, . . . , CQ will be denoted as CQ

origin. One can check that explicit calculations give
zero for any odd N, hence the condition for having nonzero results is that N be even.

Following the discussion in the paragraph above (3.16), a configuration of p1, . . . , pN−1

that reproduces the dimension d
(Q,0)
N satisfies

N−1∑
l=1

N−1∑
l′=1

(N min(l, l′) − ll′)plpl′ = N2Q2

4
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N−1∑
l=1

l(N − l)pl = N2Q

4
.

From this, it is simple to check that for all even N,

d
(Q,0)
N = d

f ;p1,...,pN−1
N

with

{
p1 = · · · = pN/2−1 = pN/2+1 = · · · = pN−1 = 0,

pN/2 = Q
(3.31)

(N even) .

For N = 2 these states are not degenerate, and for N = 3 there are no configurations of p1, p2

that would give d
(Q,0)
3 . However, the situation is more complicated for higher N. For N = 4,

the states with Q = 3, 6, 9, 12, . . . are degenerate, hence there are other configurations of
p1, . . . , pN−1 giving d

(Q,0)
4 ; for N = 5 there are configurations for Q = 8, 16, . . . . However,

we expect that our solution (3.30) with the contour CQ
origin gives the states described by (3.31).

A direct proof of this, for all N and Q, is beyond the scope of this paper. The result of the
integrals gives, for instance in the case Q = 2 (up to a phase),

GC2
origin

= AG
f

N(2i)υ
N∑

p=0

�
(− κ

4 − N
2 + p

)
�
(

κ
2 + 1

)
�
(

κ
4 − N

2 + 1 + p
) ∑

u⊂{1,...,N},v⊂{1,...,n}
|u|=|v|=p

N∏
j=1

zvj

zuj

. (3.32)

One can see that the formula above is exactly zero for N odd, as claimed.
We conjecture that with all integers Q > 0, the fermionic excited states of the Calogero–

Sutherland Hamiltonian characterized by the sets {pi} as in (3.31) are all excited states above
the fermionic ground state that satisfy simultaneously all null-vector equations.

3.2.2. Case Q = 0: ground state with mixed boundary conditions. Taking Q = 0, there
are singularities at the points z1, . . . , zN . In a fashion similar to what we did in the previous
sub-section, we can form pairs by integrating each of the variables yj around two points zij

and zij +1 in the 8-shaped contour C(ij ), in such a way that the contours do not cross each
other. Again, with κ > 4, the contours can be collapsed to lines joining adjacent angles. This
modifies the boundary conditions as in (3.20), for all indices i1, . . . , iR involved: the condition
is purely bosonic when two angles of a same pair collide, it is mixed when the angles are
part of different pairs or one of them only is part of a pair, and purely fermionic when both
angles are not part of any pairs. There are other contours giving linearly independent functions
(and other complicated boundary conditions), but we will not analyse them here (we do not
expect them, generically, to give rise to real positive solutions). We believe that the contours
described here may give rise to functions GC1,...,CR

with a simple stochastic interpretation, that
we develop in the next section.

The expressions can be made obviously real and positive for κ > 4, hence these are
ground states (here again, choosing A = (1/2)R eiϕ for some real ϕ depending on the indices
i1, . . . , iR):

GC(i1),...,C(iR ) =
(

sin
4π

κ

)R

G
f

N

∫ θi1+1

θi1

dζ1 · · ·
∫ θiR+1

θiR

dζR

×
∏

1�j<k�M

∣∣∣∣sin
ζj − ζk

2

∣∣∣∣
8
κ ∏

1�j�N,1�k�M

∣∣∣∣sin
θj − ζk

2

∣∣∣∣
− 4

κ

(κ > 4) (3.33)
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for ia ∈ {1, . . . , N}, ia+1 − ia � 2 and if i1 = 1 then iR < N . The expansions at colliding
angles are of the same form as those of the previous sub-section

GC(1),C(i2),...,C(iR ) = 2 sin
4π

κ

�
(
1 − 4

κ

)2

�
(
2 − 8

κ

) GC(i2),...,C(iR ) (θ3, . . . , θN)

×
(

sin
θ1 − θ2

2

)−2rb

(1 + O(θ1 − θ2)) (3.34)

and

GC(1),C(i2),...,C(iR ) = 2 sin
4π

κ

�
(
1 − 4

κ

)
�
(−1 + 8

κ

)
�
(

4
κ

)
×
{
GC(i2),...,C(iR ) (θ1, θ4, . . . , θN) (i2 �= 3)

GC(1),C(i3),...,C(iR ) (θ1, θ4, . . . , θN) (i2 = 3)

}

×
(

sin
θ2 − θ3

2

)−2rb

(1 + O(θ2 − θ3)) + O((θ2 − θ3)
−2rf ) . (3.35)

Here we wrote explicitly the dependence on the angles where necessary for clarity. Again,
we expect that, from the viewpoint of the Calogero–Sutherland Hamiltonian, the behaviours
(3.34) and (3.35) (with the explicit constant for the fermionic behaviour in (3.35)) fixes the
Hilbert space.

3.2.3. Case Q �= 0, R �= 0: excited states with mixed boundary conditions. Finally, it is
a simple matter to combine the two types of contours mentioned above in the general case.
Functions of the type

GCQ
origin,C(i1),...,C(iR ) (θ1, . . . , θN) (3.36)

(again, for ia ∈ {1, . . . , N}, ia+1 − ia � 2 and if i1 = 1 then iR < N ) satisfy all null-vector
equations (2.5), as well as the boundary conditions (3.20) for all indices i1, . . . , iR involved.
They describe certain excited states above the mixed ground state corresponding to (3.33),
described in the previous paragraph, generalizing the excited states (3.31). Obviously, these
are not the only contours that can be taken, but we believe that these contours give rise to
functions GCQ

origin,C(i1),...,C(iR ) that describe all possible (zero-momentum) excited states above the
mixed ground states (3.33) that can be obtained from our general integrable formula (3.30)
(but note that the construction that we explain in the next sub-section gives yet other zero-
momentum excited states). Also, they are not all possible excited states above this mixed
ground state, but we conjecture that they are all (zero-momentum) excited states that satisfy
simultaneously all null-vector equations.

3.3. Solutions with nonzero total momentum or spin

A solution to the Calogero–Sutherland eigenvalue equation with nonzero total momentum is
simply obtained by multiplying a zero-momentum solution by the exponential eis

∑
j θj . The

energy then gets added by the term Ns2

2 , and the total momentum is just Ns. Generally,
multiplying by this exponential factor a solution of energy E and momentum P gives a
new solution of energy E + Ns2

2 + sP and momentum P + Ns. Hence this corresponds to
adding a momentum s to that of each particle (making the quantum-mechanical average of the
momentum of each particle exactly what it was before plus the value s), and the multiplication
by this phase factor is just the Galilean transformation of the initial eigenfunction. Note that
in order for the eigenfunction to be still defined on the circle, the total momentum must be
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an integer, hence we must have Ns ∈ Z (otherwise, one may in fact interpret the particles as
anyons confined on a circle).

The total momentum operator −i
∑

j ∂j is, on correlation functions, the operator for
the spin of the bulk field. This would suggest that we would be able to construct in this
way correlation functions corresponding to bulk fields with nonzero spin. However, such
Galilean-transformed eigenfunctions do not generically give rise to solutions to all null-vector
equations, since the operatorsDj transform non-trivially under Galilean transformation. There
is a way, though, to obtain solutions to the null-vector equations that carry a nonzero spin,
corresponding to nonzero total momentum for the eigenfunctions. Consider the transformation
property

e−is
∑

j θjDj eis
∑

j θj = Dj − isκ∂j + isFj +
κs2

2
. (3.37)

With

� =
∑

j

θj + γ ζ

for some number γ , we then have

e−is� · Wj · eis� = Wj − isκ∂j + isFj +
κs2

2
+ isγfj (3.38)

where Wj is defined in (3.4). Note that

(κ∂j − Fj − γfj )w = −(κα + γ )fjw

where w is defined in (3.1). Hence, choosing

γ = −ακ =
{

κ
2

(
α = − 1

2

)
−2

(
α = 2

κ

) (3.39)

gives

Wj (e
is�w) =

(
λ +

κs2

2

)
eis�w (3.40)

where λ is the eigenvalue (3.9) or (3.10).
Hence, a solution with nonzero spin is obtained by replacing w by eis�w in the integral

expression (3.12). The field dimension gets added by the term κs2

2 , and the energy, by the term
Ns2

2 . The same structure works for many integration variables: one needs to replace w by

eis(
∑

j θj −κ
∑

k αkζk)w in (3.29), and the field dimension and energy get added by the same terms.
Let us denote generically the resulting correlation function by G(Q,R)

s , employing the notation
Q and R as in the paragraph above (3.28). Then, the spin of the bulk field, equivalently the
total momentum of the eigenfunction, is given by

(
N + κQ

2 − 2R
)
s:

−i
N∑

j=1

∂jG
(Q,R)
s =

(
N +

κQ

2
− 2R

)
sG(Q,R)

s . (3.41)

Note that it is not just Ns.
When Q = 0, it is like giving momentum s to each of the N − 2R fermions (the particles

that are not paired by bosonic boundary conditions), and giving no average momentum to
the bosons (the particles that are paired). We believe that it is indeed what happens if the
contours are chosen as in the discussion in the previous sub-sections. These contours are still
valid, since the singular points surrounded by the integration contours of the R variables with
α = 2

κ
are not affected by the extra factors coming from eis� . However, in the case Q = 0,
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there are still other non-trivial contours for discrete ranges of s (for instance, with R = 1, a
necessary condition is: whether 2N/κ − 2s ∈ Z and s � N/κ , or −2N/κ − 2s ∈ Z and
s � −N/κ): the contours Corigin that circle the origin, or similar contours that circle the point
at infinity. These contours do not affect the boundary conditions, and if R − R′ variables are
taken with such contours, we have new nonzero-momentum solutions with 2R′ < 2R bosons
and N − 2R′ > N − 2R fermions.

When Q �= 0, the situation becomes even more complicated. The Q integration variables
associated with α = − 1

2 now live on Riemann surfaces with more complicated singularity
structures at the origin and at infinity. The conditions for having non-trivial integration contours
are generically affected. For instance, in the case Q = 1 and R = 0, a necessary condition
is κs/2 ≡ q ∈ Z + N/2 and −N/2 � q � N/2. The general case Q �= 0, R �= 0 should
comprise a myriad of contours, including those we described in the previous sub-sections as
well as those we described here, along with conditions on the spins.

Let us note here that in order for the eigenfunction to be well defined on the circle we
need (

N +
κQ

2
− 2R

)
s ∈ Z. (3.42)

It is important to realize that this condition may not be in agreement with the conditions on s
that arose above for having certain non-trivial contours. However, it is always in agreement
with the contours of the previous sub-sections in the cases where Q = 0. That is, the
eigenfunction with only the N − 2R fermions being given an average momentum s is a valid
one.

Condition (3.42) is not really necessary from the viewpoint of correlation functions: it is
conceivable that a correlation function acquires a phase when the positions of the null fields
are all brought around the circle (this would correspond to the bulk field being ‘semi-local’
with respect to the boundary null-fields).

From the viewpoint of eigenfunctions of the Calogero–Sutherland Hamiltonian, we can
now apply a Galilean transformation to bring the momentum back to zero, and we obtain
different zero-momentum solutions with a different energy from those corresponding to G

(Q,R)
0 .

These should not correspond to ground states, because they have no reason to be real and
positive. The energy is given by (we denote by E

(Q,R)
N the energy corresponding to the

dimension d
(Q,R)
N defined in (3.28))

E
(Q,R)
N +

Ns2

2

[
1 −

(
1 +

κQ

2N
− 2R

N

)2
]

. (3.43)

We do not fully understand yet the meaning of these new zero-momentum solutions. Certainly,
for R = 0 these are yet other excited states above the fermionic ground states; hence, we have
here integral representations for these other excited states (and these should agree, of course,
with the known eigenfunctions). We have not fully identified them, because we have not fully
determined the conditions on s for all Q > 0.

With R �= 0 and Q �= 0, we obtain new excited states above the ground states with
mixed boundary conditions by taking the contours of the R integration variables associated
with α = 2

κ
as in the discussion in the previous sub-sections, and with s �= 0 restricted by

the conditions coming from the Q integration variables associated with α = − 1
2 . But, we

can also take some of the R variables to have contours surrounding the origin or infinity, as
described above, as long as the resulting conditions on the spin are in agreement with those
coming from the Q variables associated with α = − 1

2 (and if Q = 0, there is no agreement
conditions). We obtain new zero-momentum excited-states eigenfunctions with 2R′ < 2R

bosons and N − 2R′ > N − 2R fermions.
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The case Q = 0 seems at this point slightly problematic: by taking the contours as in
the previous sub-sections, we obtain new excited states above the 2R-boson, N − 2R-fermion
ground states, with energies

E
(0,R)
N +

Ns2

2

[
1 −

(
1 − 2R

N

)2
]

(3.44)

that form a continuum. Indeed, here s does not seem to be restricted by any condition for
having non-trivial contours, and since the wavefunction has zero momentum, there are no
conditions coming from imposing that it be defined on the circle. We do not know how to
interpret this continuum of zero-momentum solutions, if really it occurs; a more involved
analysis of the explicit integral formulae would certainly be useful for this purpose.

3.4. Interpretation via Coulomb gas formalism of CFT

The goal of this sub-section is to clarify our construction in relation to the Coulomb gas
formalism of CFT.

In the Coulomb gas formalism, one first constructs (boundary) vertex operators Vp(θ)

(they are operators that act on the Hilert space of radial quantization of CFT) with dimensions
p2 − 2pq for some fixed q, and with ‘charge’ p. The charge of a vertex operator is just the
associated eigenvalue of a charge operator Q (that is, [Q,Vp] = pVp), that is supposed to
exist on the Hilbert space. This means that the product Vp1Vp2 has charge p1 + p2, and taking
into consideration the dimension, we have the OPE’s

Vp1(θ1)Vp2(θ2) ∼ (θ1 − θ2)
2p1p2Vp1+p2(θ2).

The characteristic properties of a these vertex operator are that correlation functions of products
of such objects are nonzero only when the total charge is equal to 2q, and that they evaluate,
in our context, to the product of all pairings of the vertex operators involved, a pairing being
just equal to [2 sin((θ1 − θ2)/2)]p where p is the power of θ1 − θ2 that appears in the leading
OPE.

One then constructs certain special level-2 null fields φ (and higher-level null fields as
well) by choosing q = κ−4

4
√

κ
and identifying φ = Vp with p = 1√

κ
. This indeed reproduces the

correct OPE’s of such null fields, but without the identity component; hence, these are very
special level-2 null-fields.

In our case, we take these boundary fields and put at the centre of the disc the product of
bulk holomorphic and anti-holomorphic vertex operators VP V̄ P , with charge P = −Np/2+q

if there are N boundary null fields. By mapping the boundary theory to a holomorphic theory
on the full plane (where V̄ P becomes VP at infinity), we are left with correlation functions
of holomorphic vertex operators. The total charge requirement is satisfied, hence correlation
functions are nonzero. This indeed reproduces the fermionic correlation function G

f

N (with an
appropriate normalization), and in particular, one can check that the dimension of the product
of bulk vertex operators is d

f

N .
The Coulomb gas construction then goes on to construct more complicated null-fields by

inserting a vertex operator of dimension 1 and by integrating its position over closed contours.
This insertion scales as a dimension 0 non-local object, and its effect is to change the fields
that are involved. More precisely, the null fields become different null fields (with different
OPE’s that contain the identity field), and the bulk field is modified. There are two possible
dimension-1 vertex operators: Vr± with r± = q ±

√
q2 + 1. The correlation function (3.1)

is exactly the correlation function with one such insertion, and the function (3.25) is the
correlation function with M insertions. Our derivation shows how these insertions modify the
fields for various choices of the contours.
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4. Completeness in the case N = 3 spinless

In this section, we consider in general the problem of determining if an eigenfunction of
the Calogero–Sutherland Hamiltonian can give a boundary CFT correlation function G in the
case of three particles. We show that mixed boundary conditions with N = 3 impose the
dimension of the field to be d

f

1 and, in the cases where κ �= 6 and κ �= 8/n with n = 2, 3, . . . ,

we argue that the solution with any kind of mixed boundary condition has a 3-dimensional
basis composed by the solutions with purely bosonic behaviours at some pair of colliding
angles that we described in the previous section.

We will start with considerations for general particle number N. For definiteness, consider
the ordering of the angles to be θ1 > θ2 > · · · > θN and consider the behaviour as θ1 → θ2:
it is a linear combination of the power laws (θ1 − θ2)

−2rf and (θ1 − θ2)
−2rb .

As we said in the introduction, the constraints that come out of the system of equation (2.5)
are essentially part of the general theory of null-vectors in CFT. In particular, the fermionic
behaviour (1.3) corresponds to a fusion into a level-3 degenerate boundary field (φ1,3 in the
Kac classification), and the bosonic behaviour (1.2) to a fusion into the identity (1) operator.

4.1. Conditions from null-vector equations

It will be convenient to consider the separation � between d� and the 1-leg exponent d
f

1

(2.20), that is, the equations DjG = (
d

f

1 + �
)
G. We first look at arbitrary N. A generic

solution to the Calogero–Sutherland system has, around θ1 = θ2, a basis of the form

G = θ−2r
1,2

(
A + Bθ1,2 + Cθ2

1,2 + Dθ3
1,2 + . . .

)
(4.1)

where r = rf or r = rb, where we use

θj,k = θj − θk (4.2)

and where A �= 0, B, . . . are functions of θ2, . . . , θN . (That is, in general G can be a linear
combination of one expansion with r = rf and one with r = rb.) Note that for κ = 8/n with
n = 1, 2, 3, . . . , we have ‘resonances’: −2rf = −2rb + n; however, we will not look at the
resulting logarithmic behaviours.

As shown in appendix C, the null-vector equations (2.5) lead to the following constraints,
which can as well be seen as coming from null-vector CFT considerations:

(r = rf and ∂2A = 2B) or (r = rb and ∂2A = 0 and (B = 0 or κ = 4)),

(4.3)∑
k �=1,2

(f2k∂k − hf ′
2k)A − 1

6
(2r − h)A + 2∂2B − (2rκ − κ − 6)(rκ − κ + 1)

κ
C = �A (4.4)

and

r = rb ⇒ −κ

2
∂2
j A +

∑
k �=1,2,j

(fjk∂k − hf ′
jk)A = �A (4.5)

r = rf ⇒ −κ

2
∂2
j A +

∑
k �=1,2,j

(fjk∂k − hf ′
jk)A + fj2∂2A − 2h3,1f

′
j2A = �A. (4.6)

Equation (4.5) is the equation D(N−2)
j A = (

d
f

1 + �
)
A with the differential operator D(N−2)

j

being like Dj but for the N − 2 angles θ3, . . . , θN , instead of the N angles. Also, in (4.6),
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h1,3 = 8−κ
2κ

is the dimension of a level-3 degenerate field. Equations (4.5) and (4.6) indicate
that the function A describes, in the case r = rb, a correlation function with N − 2 level-2
degenerate boundary fields, and, in the case r = rf , a correlation function with one level-3
degenerate boundary field (at θ2) and N − 2 level-2 degenerate boundary fields.

According to (4.3), when the boundary fields fuse to the identity, the second term of
the expansion, with coefficient B, is absent, except possibly when κ = 4. The case κ = 4
corresponds to the theory with c = 1, which is the free massless boson, where there is a
natural operator of dimension 1 which indeed occurs as a symmetry descendant of the identity
operator.

Along with conditions (4.3), equation (4.4) fixes C in terms of the function A (and the
number �) in the fermionic and bosonic cases with κ �= 4. For κ = 4, the function C also
depends upon B, which is not necessarily zero.

4.2. Case N = 3

We now analyse in more detail the case N = 3. For spinless �, the function A depends only
upon θ2 − θ3.

Let us first analyse the bosonic case. Then, equation (4.5) implies that � = 0 since A is
constant. Further, equation (C.2) fixes C uniquely (up to normalization):

C = h

8 − 3κ

(
f ′

23 +
1

6

)
A.

It is simple to see that all coefficients D, . . . are then also fixed uniquely, if the solution exists,
as long as κ �= 8/n for n = 2, 3, 4, . . .. It is worth noting that since a solution with one purely
bosonic behaviour as some pair of colliding angles is unique, then a solution with two purely
bosonic conditions must have all bosonic conditions by cyclic permutations.

When κ = 4, still in the bosonic case, a further analysis shows that in fact we must have
B = 0, so that C and all other coefficients are also fixed uniquely, if the solution exists. Then,
there cannot be non-logarithmic solutions with purely fermionic behaviour (and � = 0),
since the fermionic exponent occurs in the bosonic solution (a resonance). Hence, any non-
logarithmic solution must be purely bosonic everywhere, but we showed that such solutions
to the Calogero–Sutherland system do not satisfy (2.5) at κ = 4. That is, a bosonic solution
will also have to involve logarithms.

When κ = 8/3, equation (C.2) becomes inconsistent, as it requires A = 0: a bosonic
behaviour for this value of κ will have to involve some logarithms as well.

Similarly, when κ = 8/n for n = 4, 5, 6, . . . , difficulties appear when trying to determine
the coefficients D, . . . , and logarithms will be necessary.

Finally, it is worth noting that for κ = 6, since the solution is unique, it is given by the
constant solution G = const.

Hence, we have showed that for κ �= 8/n for n = 2, 3, . . . , if a general solution has some
contribution to a bosonic behaviour at any pair of colliding angles, say at θ1 = θ2, it must
correspond to an operator of dimension d

f

1 , and that the purely bosonic contribution at θ1 = θ2

is unique up to normalization. In the previous section, we constructed explicitly the unique
solutions that are purely bosonic as some pair of colliding angles, and we saw that, except for
κ = 6, they have fermionic contributions at other pairs of colliding angles. Now, the part of
a general solution that is purely fermionic at θ1 = θ2 is not uniquely fixed. This part is fixed
once the value of the function A (involved in its expansion) is fixed. But the function A is
ruled by (4.6), which determines the possible behaviours at colliding angles θ2 −θ3 = 0, 2π in
accordance to the fusion rules φ1,3 × φ1,2 
→ φ1,4 and φ1,3 × φ1,2 
→ φ1,2. Moreover, one can
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see that a choice of the ratios V between the amplitudes of these two behaviours as θ2 → θ+
3 ,

for instance, along with the eigenvalue � completely fix the solution up to a normalization.
Since we have � = 0, we are left with a one-dimensional subspace of solutions for A (up
to normalization). We already know of such a one-dimensional subspace: it comes from
taking linear combinations of the particular solutions G (constructed in the previous section)
with purely bosonic behaviour at θ2 = θ3, those with purely bosonic behaviour at θ3 = θ1,
and those with purely bosonic behaviour at θ1 = θ2, with the constraint that the behaviour
at θ1 = θ2 of the resulting linear combination is purely fermionic. Hence, this constitutes
all possible solutions with � = 0 that are purely fermionic at θ1 = θ2. In other words, any
general solution G that has some part of a bosonic behaviour at some colliding angles should
be a linear combination of the three unique solutions that have purely bosonic behaviour at
the three different pairs of colliding angles. This argument breaks down at the value κ = 6,
since then only G = const can have pure bosonic behaviour at some colliding angles.

5. Discussion

As we mentioned, our results are based solely on level-2 null vector equations of boundary
CFT. Here, we attempt an interpretation of our results as measures in the continuum O(n) loop
model at criticality [12] (which we recall below), mainly based on the values of the exponents
that we found.

In order to calculate prescribed measures from the system of differential equations, one
needs to specify the boundary conditions: the various proportions of bosonic and fermionic
behaviours at different pairs of colliding angles. Two problems arise.

The general problem of determining what boundary conditions completely fix the solutions
is quite involved; in the case N = 2 it is the (solved!) problem of boundary conditions for
second-order differential equations, and in the case N = 3 we solved it above (although not to
mathematical rigor). In the general case, it is related to finding OPE’s of null fields that form
a consistent operator algebra. It is believed [5] that if one specifies all pairs, say P, where a
bosonic behaviour occurs, along with some normalization condition, then the solution to all
null-vector equations is fixed, and in particular the fermionic components at the pairs P is
fixed. But in our case, the boundary conditions are specified quite differently (in particular,
we specify both bosonic and fermionic components at many pairs).

More importantly, the problem of relating a set of boundary conditions (or an operator
algebra) to prescriptions on measures is still far from being solved. Very natural arguments
were given in [5] for the case where no bulk field is present, from SLE ideas. We will use
these arguments below in a simplified version and in a different language (without using SLE
ideas) along with some of our solutions in order to derive conjectures for certain measures in
the O(n) model.

5.1. Overview of the O(n) loop model

A measure in the lattice O(n) model has the form∑
G

x�nω (5.1)

where G denotes all configurations of self and mutually avoiding loops and, possibly, curves
with prescribed end-points on the honeycomb lattice, � is the total length of a configuration,
ω is the total number of loops of a configuration, and x = 1/

√
2 +

√
2 − n [12] is the value at

which the system is critical (on the honeycomb lattice), for real numbers −2 < n < 2. We will
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imagine restricting all loops and curves to lie inside a disc. The continuum limit is obtained
by taking the lattice mesh size infinitely small (equivalently, by taking the disc infinitely large
in units of lattice spacing). When the continuum limit of this model is taken, it is expected, if
it exists, to be described in some way by a conformal field theory with central charge c given
in (2.2) where κ is related to n via

n = 2 cos π

(
1 − 4

κ

)
. (5.2)

In the continuum limit, the resulting curves are expected to be described by SLEκ curves. For
the sake of keeping the discussion concise, in the following we will not think in terms of SLE
curves (or in terms of growing such curves from some arbitrary points), but rather we will
simply draw our intuition from the idea of the continuum limit of the O(n) model.

Taking the continuum limit of a certain measure of the O(n) model requires an appropriate
re-normalization of this measure. For instance, the measure (5.1) for configurations with only
one curve (apart from the loops) that starts and ends on fixed points on the boundary of the
disc becomes infinite as the mesh size is made smaller. The series of numbers obtained as
the mesh size is made smaller are quite meaningless. But if we take the ratio of that measure
with another measure where the curve starts and ends on different fixed points, then we expect
the limit of zero mesh size to be finite. This ratio is expected to be equal, in the limit, to a
ratio of correlation functions in CFT, where level-2 null fields are inserted on the boundary of
the disc at the positions where the end-points of the curves lie. We will normalize measures
for single curves starting and ending at fixed points by always taking the ratio with, say, the
measure where the fixed points are exactly opposite each other on the boundary of the disc.
The result is what we will refer to as a measure on such configurations in the continuum,
and is what corresponds to correlation functions of null fields up to a positive (nonzero)
normalization. For more curves and other prescriptions on their shapes, we will keep the same
principle: a measure will be a limit that only encodes the dependence on the starting and
ending points of the curves, obtained by taking the ratio with such a measure where end-points
are at arbitrarily chosen fixed positions. The limit is that of mesh size going to zero, and then
of other parameters going to zero if necessary for the definition of the bulk field or of new
boundary fields. The results of such normalized limits correspond to correlation functions.

It is worth noting that in the continuum O(n) loop model, one can define fields On′(x)

by the fact that, in the underlying lattice model, loops around the point x are counted with the
value n′ replacing the value n in the partition function. The dimensions of these fields was
calculated in [14], and are given by

dn′,n = (κ ′ − κ)(κκ ′ − 2κ − 2κ ′)
κ(κ ′)2

(5.3)

where n′ = 2 cos π
(
1 − 4

κ ′
)

(this will be used in the discussion in appendix D).

5.2. Fusion and measures

As two angles collide, two power law behaviours for the measure are possible (here we
disregard possible logarithmic behaviours and resonances), and generically occur in linear
combinations. The coefficient of the leading term of each power law is itself another
measure, for different curve configurations. These new measures correspond to new correlation
functions, where the two level-2 null fields have been replaced by a single field, as occurring in
their fusion: φ ·φ = 1 +φ1,3. The field 1 is the identity field and is associated with the bosonic
behaviour, and φ1,3 is a level-3 null field and is associated with the fermionic behaviour. It
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A

B

Figure 6. Interpretation of bosonic (A) and fermionic (B) behaviours in a generic boundary
condition involving a linear combination of these behaviours.

is important to realize that only the fact that the field φ gives rise to the level-2 null vector
equations (2.5) implies that 1 is the identity and that φ1,3 is a level-3 null field whose properties
are essentially expressed in (C.4), (4.5) and (4.6). What curve configurations are associated
with these correlation functions obtained by fusion?

We give here only heuristic arguments. First, the measure resulting from the fusion to
the identity is that on configurations where the curves touching the boundary at the colliding
angles are ‘disconnected’ from the boundary and joined, near to the boundary, into one curve
(figure 6(A)). Of course, such an operation is quite imprecise, but we will only discuss
qualitative features. Note that in order for this fusion to occur, it must be, in some sense, that
the resulting curve does not affect the measure that corresponds to the correlation function
obtained by removing the two colliding null fields, except for a possible normalization (since
the operator resulting from the fusion is the identity).

Second, the measure resulting from the fusion to the level-3 null field is that on
configurations with the additional prescription that two curves start at the fused point
(figure 6(B)).

In appendix D, we use these general ideas to explain various known exponents for the
case N = 2.

5.3. The fermionic ground states and the N-leg exponents

The correlation function G
f

N (2.19) can be interpreted using the fact that the associated bulk
field dimension d

f

N (2.20) is the N-leg exponent [11]. That is, consider the measure on N
curves that have end-points at the angles θ1, . . . , θN on the boundary of the disc and at some
angles (such that curves do not cross each other) at a radius ε from the origin, as depicted in
figure 7. As ε is sent to zero, this measure vanishes as G

f

Nεd
f

N , up to a normalization.
The fact that this situation corresponds to uniform boundary conditions of fermionic type

is easy to understand. Indeed, the bosonic behaviour is divergent when κ < 6, but there is no
reason, as two points collide, for the measure to grow. In contrast, it should decrease since
there are less and less configurations as the curves emanating from the colliding points are
more and more constrained by each other. Hence there is no bosonic behaviour. Another way
of understanding, valid for any κ , is as follows. As two angles collide, the curve resulting
from a bosonic behaviour would be one that starts and end at the centre and that go all the
way to a region not far from the boundary. But a curve that starts and ends at the centre has
overwhelming probability of staying near the centre; imposing that it goes to a region near
the boundary changes the measure, hence the fusion cannot give the identity operator; this is
inconsistent, so there cannot be bosonic behaviour (see figure 8).
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Fermionic

Figure 7. A typical configuration for the measure giving the N-leg exponent with N = 7. The
inner circle has radius ε, and the leading part as it is sent to 0 is the correlation function G

f

7 times

the power law εd
f
7 . The correlation function has all fermionic boundary conditions.

(A) (B)

Figure 8. A typical configuration for the measure that would result as the coefficient of (A) a
bosonic behaviour and (B) a fermionic behaviour in the measure giving the N-leg exponent with
N = 7, as the two downmost end-points are approached in figure 7. The bosonic behaviour is
forbidden, since the extra loop connected to the origin affects the measure, but the fermionic
behaviour is allowed since the two curves connecting a common point to the origin extend
macroscopically into the disc.

5.4. The solutions with mixed boundary conditions and the N ′-leg exponents

The correlation functions GC(i1),...,C(iR ) (3.33) should be interpreted similarly using the fact that
the associated bulk field dimension d

f

N−2R (2.20) is the (N−2R)-leg exponent. One could then
expect that it is the measure on configurations like that of figure 2 (at least for 2R < N ; we will
come back to the 0-leg exponent). Arguments like those of the previous sub-section indeed
suggest, for κ < 6, that as two paired angles (two bosons, paired by a curve joining them in
the continuum O(n) model) collide, the measure should grow very much, since the curve can
be made smaller and smaller. Hence, there should be a bosonic behaviour. However, it also
suggests that the boundary condition as a paired angle (a boson) collides with an unpaired
angle (a fermion) is the purely fermionic one: indeed, there is no reason for the measure to
grow there, it should just decrease, as the curves are constrained by each other. This suggests
that our solutions (3.33) are not the correct ones, and that we have to take linear combinations
of these solutions to obtain the desired behaviours (if possible).

When there is just one pair of bosons and N particles, it is indeed possible to take linear
combinations of our N-independent solutions (where N different pairs are taken) to obtain
the suggested behaviour: bosonic at a single pair, say at the collision θ1 → θ2, with some
fermionic component, and purely fermionic everywhere else. For a bosonic behaviour at the
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collision θ1 → θ2, the linear combination M
(1)
N is obtained from the inverse of an N by N

matrix through

M
(1)
N ∝ (1, 0, 0, . . . , 0)




A B 0 0 · · · 0 B

B A B 0 · · · 0 0
0 B A B · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
B 0 0 0 · · · B A




−1 


GC(1)

GC(2)

· · ·
GC(N)




where

A = 2 sin
4π

κ

�
(
1 − 4

κ

)2

�
(
2 − 8

κ

) , B = 2 sin
4π

κ

�
(
1 − 4

κ

)
�
(−1 + 8

κ

)
�
(

4
κ

) .

With appropriate normalization, it can be written as

M
(1)
N =

N∑
i=1

xiGC(i) , xi =
[N/2]∑
j=0

ci,jA
jB[N/2]−j

where the ci,j ’s are the unique solution to

ci,j+1 + ci+1,j + ci+2,j+1 = 0, (i = 1, 2, . . . , N − 1, j = −1, 0, . . . , [N/2])

with ci+N,j = ci,j and

c1,[N/2] = 1, c2,[N/2] = · · · = cN,[N/2] = 0, ci,−1 = 0.

From formulae (3.34) and (3.35), one can check that this linear combination has purely
fermionic behaviour as θi → θi+1 for i = 2, 3, . . . , N (with θN+1 ≡ θ1 − 2π ), and a bosonic
component as θ1 → θ2 (along with some fermionic component). We have for instance

M
(1)
3 = (A + B)GC(1) − BGC(2) − BGC(3) .

As we said above, it is expected that this solution is, for every N, the unique one (up to
normalization) with those behaviours—without the need to specify the fermionic component
as θ1 → θ2. The requirement for this solution to be a measure is that it be everywhere positive
(with appropriate normalization). We see for instance that M(1)

3 = (A−B)GC(1) when all angles

are equidistant, and that as θ1 → θ2, we have M
(1)
3 ∼ (A−B)(A+2B)G

f

N−2

(
sin θ1−θ2

2

)−2rb ; at

both of these particular points the function M
(1)
3 has the same sign. It is also possible to check

numerically that everywhere it has the same sign. Hence it correctly represents a measure.
We also verified that in the case N = 4 the sign is the same at the particular points where
all angles are equidistant and where θ1 → θ2. A general proof of positivity would be very
interesting and would strengthen the conjecture according to which the linear combinations
above are measures in the O(n) model, but it is beyond the scope of this paper.

When more then one pair is taken, our solutions are not enough to form linear combinations
with the suggested behaviours. One needs to take certain analytic continuations, which are
not obviously real and positive.
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Appendix A. A short definition of Schramm–Loewner evolution (SLE)

Radial SLE (which is the type of SLE of interest for our present work) is a way of constructing
a measure µ(γ ) for a random (non-self-crossing, continuous) curve γ on the unit disc D

joining a point a ∈ ∂D of its boundary to the centre of the disc, such that a certain property of
‘local conformal invariance’ holds. This property is mathematically known as domain Markov
property, and says that

µ|�⊂γ = µ · f�

where � is a curve with one end at the point a and the other inside the disc, and f� is the
uniformizing conformal map for �, a conformal map f� : D\� → D that maps the disc from
which the ‘slit’ � has been removed back to the disc itself, preserving the centre (this map is
defined up to a rotation). In the equation above, on the left-hand side one restricts the measure
to curves γ that cover entirely �.

SLE is a construction of the measure µ through the stochastic growth of a curve from the
point a to the centre. In general, the growth of a curve γt with ‘time’ t ∈ R

+ can be described
by the growth of its uniformizing conformal map gt . The theory of Loewner says that with
the uniformizing conformal map chosen to have real and positive derivative at the centre and
with the parametrization of t given by g′

t (0) = et , it must satisfy the differential equation

∂

∂t
gt (z) = −gt (z)

gt (z) + at

gt (z) − at

where at ∈ ∂D is a continuous function from R
+ to the boundary of the disc. This driving

function characterizes the growing curve that corresponds to the evolving conformal map gt .
When the curve is grown to t → ∞, it connects the point a = a0 to the centre of the disc.
For the grown curve to be a random curve satisfying the property of conformal invariance
above, Schramm [3] found that the random driving function must be a Brownian motion on
the boundary of the disc:

at = eiθt , θt = √
κBt + θ0

where Bt is a standard one-dimensional Brownian motion, with normalization EB2
t = t . This

describes a one-parameter family of measures, parametrized by κ ∈ [0, 8], that satisfy the
property of conformal invariance above; these are the only measures with this property.

The power of SLE comes from the fact that probabilities can be evaluated using the explicit
growth process of the uniformizing map gt . This generically gives rise to second-order linear
differential equations which are of the form of level-2 null vector equations of CFT (see, for
instance, the review [16]).

Appendix B. Derivation of the boundary level-2 null-vector equations on the disc

The covariance of the correlation function (2.1) under the transformation z 
→ z + α(z) with
(2.3) is found by inserting the appropriate charge:〈

φ(eiθ1) · · · φ(eiθN )

(∫
C

T (z)α(z)
dz

2π i
−
∫

C

T̄ (z̄)α(z)
dz̄

2π i

)
�(0)

〉
where C is a contour inside the disc |z| < 1 going round the origin counterclockwise once.
Using the holomorphic OPE

T (z)�(0) ∼ h�

z2
�(0) +

1

z
∂�(0) + · · ·
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and shrinking the contour C to the origin, we then get

(h� + h̄�)


 N∑

j=1

bj


G. (B.1)

On the other hand, from the conformal boundary condition for a theory on the disc, the
anti-holomorphic component T̄ (z̄) of the stress–energy tensor inside the disc is related to the
continuation of the holomorphic component outside the disc via

T̄ (z̄) = z̄−4T (z̄−1). (B.2)

Along with relation (2.4), deforming the contour towards the boundary of the disc gives∫
C

T (z)α(z)
dz

2π i
−
∫

C

T̄ (z̄)α(z)
dz̄

2π i
=
∫

C

T (z)α(z)
dz

2π i
−
∫

C ′
T (z)αj (z)

dz

2π i

where the contour C ′ is outside the disc |z| < 1 and going counterclockwise. Hence, we are
left with

−
∮

z1,...,zN

〈T (z)φ(z1) · · · φ(zN)�(0)〉 α(z)
dz

2π i
(B.3)

where the integral means a sum of integrals counterclockwise around the points z1, . . . , zN .
Relation (B.2) specialized to the boundary z = zB with |zB | = 1 implies a set of relations

(a Virasoro algebra isomorphism preserving primary fields)

L̄n = (−1)nz̄2n
B

∑
k�0

z̄k
B

(2 − n − k)k

k!
Ln+kz (B.4)

amongst the modes L̄n and Ln of the stress energy tensor,

T (z) =
∑
n∈Z

(z − zB)−n−2Ln, T̄ (z̄) =
∑
n∈Z

(z̄ − z̄B)−n−2L̄n,

when they are applied on a boundary field φ at zB . Along with the Ward identity associated
with rotations,

(zBL−1 − z̄BL̄−1)φ(zB) = (zB∂φ − z̄B ∂̄φ)(zB)

where ∂ ≡ ∂/∂z and ∂̄ ≡ ∂/∂z̄, we then have for a primary boundary field

Lnφ(zB) = 0 (n � 1), L0φ(zB) = hφ(zB),
(B.5)

L−1φ(zB) = [zh∂(z−hφ(z))]z=zB
.

For a level-2 degenerate boundary field, on which L−2 = κ
4 L2

−1, this gives

L−2φ(zB) = κ

4
[zh∂2(z−hφ(z))]z=zB

. (B.6)

This can be used to evaluate (B.3), giving
N∑

j=1

bj z
h
j D̃j z

−h
j G

with

D̃j = −κ

2

(
∂

∂θj

)2

+
(κ

2
− 3

)
i

∂

∂θj

+
6 − κ

2κ

−
∑
k �=j

(
cot

(
θk − θj

2

)
∂

∂θk

+ ih cot

(
θk − θj

2

)
− h

2 sin2
( θk−θj

2

)
)

.
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Using the similarity transformation

zh
j

∂

∂θj

z−h
j = ∂

∂θj

− ih,

we finally find the null-vector equations for the correlation function G to be (2.5) with
differential operators (2.6).

Appendix C. Derivation of the constraints from null-vector equations

The equation D1G = (
d

�
f

1
+ �

)
G leads to two equations, upon equating the coefficients of

θ−2r−1
1,2 and θ−2r

1,2 :

∂2A − (rκ − 3)(2rκ − κ + 2)

2κ
B = 0 (C.1)

and (4.4). On the other hand, the equation D2G = (
d

�
f

1
+ �

)
G leads to two similar-looking

but different equations:

rκ∂2A +
(rκ − 3)(2rκ − κ + 2)

2κ
B = 0 (C.2)

and∑
k �=1,2

((f2k∂k − hf ′
2k)A − 1

6
(2r − h)A − κ

2
∂2

2 A − κ(2r − 1)∂2B

− (2rκ − κ − 6)(rκ − κ + 1)

κ
C = �A. (C.3)

Equations (C.1) and (C.2) imply (4.3). On the other hand, it is a simple matter to check that
these conditions automatically lead to the consistency of equations (4.4) and (C.3)

Thirdly the equations DjG = (
d

�
f

1
+ �

)
G for j � 3 lead to

−κ

2
∂2
j A +

∑
k �=1,2,j

(fjk∂k − hf ′
jk)A + fj2∂2A − 2(h − r)f ′

j2A = �A. (C.4)

In the bosonic case r = rb = h, this along with condition (4.3) simply gives (4.5), and in the
fermionic case r = rf , we find (4.6).

Appendix D. The case N = 2

From the viewpoint of the Calogero–Suthgerland Hamiltonian, the case N = 2 is not of great
interest. Indeed, since the eigenfunctions just depend on the single variable θ1−θ2, it is a simple
matter to obtain a general solution to the Calogero–Sutherland eigenvalue equation. Allowing
arbitrary boundary conditions both as θ1 → θ+

2 and as θ1 → (θ2 +2π)−, any eigenvalue can be
obtained (we do not discuss issues associated with the Hermiticity of the Hamiltonian in such
conditions). Moreover, the two null-vector equations are equivalent, hence such a general
solution satisfies all required properties of conformal correlation functions. Any bulk field
dimension d� is then allowed to appear. However, of course, not all are expected to correspond
to dimensions of actual fields of the underlying CFT. It is then instructive to enumerate and
interpret some scaling dimensions associated with known fields.

Besides the 2-leg exponent discussed above, there are three scaling dimensions known to
correspond to well-defined O(n) configurations that we wish to discuss.

One is the dimension 0, corresponding to the indicator event: it is associated with the
measure on curves started at some angle θ1 and ended at θ2 that enclose the origin. Of course,
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θ
Mixed

Fermionic

1θ

2

Figure D1. A typical configuration for the measure associated with the indicator event, with
boundary conditions.

no ‘shrinking’ disc around the origin is involved in the definition of this measure, hence the
associated exponent is trivially 0. The corresponding appropriately normalized correlation
function gives Schramm’s formula [3] (on the disc), derived in the context of SLE:

GSchramm
2 = ei θ

2 sin
2
κ

(
θ

2

)
2F1

(
1,

4

κ
; 8

κ
; 1 − eiθ

)
, θ = θ1 − θ2.

By definition, at θ = 0 the hypergeometric function is on its principal branch. It has a branch
point at its argument equal to 1, hence as θ goes from 0 to 2π , the branch point is circled once
counterclockwise and a monodromy is acquired.

The corresponding Calogero–Sutherland eigenfunction has purely fermionic boundary
condition on the side where the SLE curve surrounds the origin (θ → 0+), and a mix of
bosonic and fermionic on the other side (θ → 2π−), as depicted in figure D1. Again,
the boundary conditions can be made plausible. On the purely fermionic side, the bosonic
behaviour does not occur because it would mean imposing a macroscopic loop (since the loop
has to be near to the boundary and has to surround the origin); such macroscopic loops do not
occur with probability 1 in the measure on loops. On the other side, the bosonic behaviour
does occur, because imposing a loop of any size not surrounding the origin does not affect the
measure; they do occur with probability 1. The fermionic fusion also occurs on both sides
since the two curves starting at one point are allowed to extend macroscopically in both cases.

Another is the dimension

dm
2 = (6 − κ)(κ − 2)

8κ
+

κ2 − 16

32κ
(D.1)

(corresponding to the eigenvalue Em
2 = 1

16 of the Calogero–Sutherland Hamiltonian). It is
natural to consider this dimension, since the associated correlation function,

G1-arm
2 = sin−2rf

(
θ1 − θ2

4

)
cos−2rb

(
θ1 − θ2

4

)
(D.2)

gives purely fermionic boundary condition on one side, and purely bosonic on the other side.
As was noted in [1], when specialized to κ = 6, it corresponds to the 1-arm exponent5,

calculated in the context of SLE in [15]. More generally, for κ > 4 it gives h/6 + c/12 + λ

where λ occurs in the measure µ ∝ ελ as ε → 0 on single radial SLE curves that contain
no counterclockwise loops around the origin before reaching a radius ε to the origin [15].
Hence, we expect that the quantity G1-arm

2 εdm
2 give the leading part of the measure on single

5 The 1-arm exponent characterizes the power law with which vanishes the measure in site percolation with constraint
that at least one path exists from the origin to a surrounding circle, as the radius of the circle is made infinite.
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curves connecting points at angles θ1 and θ2 on the boundary of the disc with the condition
that no loop forms around the origin unless it is completely contained inside a disc of radius
ε around the origin. The extra terms h/6 + c/12 in dm

2 account for the change from a radial
curve (starting on the boundary and ending at the centre) to chordal curve (starting and ending
on the boundary).

This interpretation is corrobated by noticing that the dimension (5.3) of the fields O0

in the continuum O(n) model is exactly the exponent dm
2 . Recall that the field O0 placed

at the origin forbids any loop surrounding the origin in the O(n) model, since it attributes to
them a weight 0. Naturally, the dimension of this field at κ = 6 is the 1-arm exponent, since
the absence of loops around the origin implies the presence of a percolation path from the
boundary of the disc to the centre.

From this interpretation, the boundary conditions can be understood as follows. On the
side of the bosonic behaviour, the fermionic fusion is absent because two curve starting from
one point will almost surely, for κ > 4, have double points so that loops are formed around the
origin; if this is forbidden, the two curve cannot extend macroscopically and the fusion does
not occur. On the side of the fermionic behaviour, the bosonic behaviour is absent because
joining the curve exactly produces a forbidden loop around the origin.

The last dimension that we wish to consider here is the 0-leg exponent ((2.20) with
N = 0), which turns out to be d

f

0 = (c − 1)/12. The corresponding correlation function can
be read off from our solution with N = 2 and R = 1,

G
0-leg
2 = e−i (κ+4)θ

2κ sin1− 6
κ

(
θ

2

)
2F1

(
1 − 4

κ
, 1 − 4

κ
; 2; 1 − eiθ

)
(D.3)

with θ = θ1 − θ2 (this corresponds to the eigenvalue E
0-leg
2 = 0 of the Calogero–Sutherland

Hamiltonian). It gives purely bosonic conditions on one side (θ → 0+), and mixed on the
other side (θ → 2π−). We expect that the quantity G

0-leg
2 εd

f

0 is the leading part of the measure
on configurations where a curve joins points at angles θ1 and θ2 on the boundary while being
restricted not to come closer than ε to the origin. It is natural that this amplitude diverge as the
radius is sent to zero (the 0-leg exponent is indeed negative, except when κ = 4, where it is 0).
This interpretation is reinforced by noticing the following. It is a simple matter to observe that
for the maximum value n′ = 2 (that is, κ ′ = 4), one finds that the field On′ of the continuum
O(n) model has a dimension (5.3) given by the 0-leg exponent d2,n = d

f

0 . For this maximum
value, there is more likely a loop around the origin, which constrains the curve to stay away
from the origin as described above. The boundary conditions can also be understood from this
picture. On the bosonic side, there is no fermionic fusion because the two curves starting from
one point are restrained away from the origin (they cannot form small enough loops around
the origin). On the mixed side, fermionic contributions are clearly non-zero, and the bosonic
fusion occurs since adding a macroscopic loop around the origin does not change the measure
(such loops are already very likely).

Note that it is this situation that we generalized to N particles with a N ′-leg bulk field,
N ′ = N − 2M,M ∈ N.
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